Back to Basics Workshop

Interlaboratory Study:

Indirect Tensile Cracking Test

(IDT-CT) at Intermediate Temperature

Jhony Habbouche, Ph.D., P.E.
Senior Research Scientist
Virginia Transportation Research Council

November 17-18, 2022

Jointly sponsored By VAA, VTRC and VDOT

Virginia's BMD Specifications

Cracking

Indirect Tensile (IDT) Test (ASTM D8225)

CT index ≥ 70

Durability

Cantabro Mass
Loss Test
(AASHTO T 401)
CML ≤ 7.5 %

Moisture Damage

Tensile Strength
Ratio Test
(AASHTO T 283)

TSR ≥ 80 %

Rutting

Asphalt Pavement Analyzer (APA) Rut Test (AASHTO T 340)

RD ≤ 8.0 mm

IDT Cracking Test (IDT-CT / IDEAL-CT)

Performed as per ASTM D8225

- ➤ Testing Temperature: 25°C
- ➤ Air Voids Content: 7 ± 0.5%
- ➤ Loading Rate: 50 ± 2 mm/min
- ➤ Specimen Thickness: 62 ± 1 mm
- ➤ Specimen Diameter: 150 ± 2 mm

IDT Cracking Test (IDT-CT / IDEAL-CT)

$$CT \ index = \frac{G_f}{|m_{75}|} * \frac{l_{75}}{D} * \frac{t}{62}$$

- > D = specimen diameter, mm
- > t = specimen thickness, mm
- $ightharpoonup G_f$ = total area under the curve divided by the product of [D] and [t]
- $> m_{75} = \left| \frac{p_{85} p_{65}}{l_{85} l_{65}} \right|$
- $ightharpoonup l_{75}$ = displacement corresponding to 75% of P_{max} at the post-peak stage (p_{75}), kN

Cracking Tolerance Index (CT index) - Calculation

Testing with Good / Compliant Data

- No seating load
- > Test ends when load reaches 0.1 kN or less
- ➤ No irregularities in the curves
- Constant loading rate of 50 ± 2 mm/min

Problem Statement

- No information currently exists regarding the precision and bias of the IDT-CT method as specified in ASTM D8225
 - ➤ Potential issues if different test results are measured by individual laboratories conducting testing on the same asphalt mixture.
 - Topic of interest during agency and industry discussions as part of BMD implementation.

Phase I – Objectives

- To establish the acceptable variability of the test method: "repeatability" and "reproducibility".
 - ➤ Determine and develop precision estimates and statements for the IDT-CT indices (e.g., CT index)
- Assess the effect of equipment type and loading rate on the selected IDT-CT indices.
- Preliminary assess the impact of shelf life of compacted specimens on the selected IDT-CT indices.

Phase I – Scope of Work

- Phase I: Evaluation of specimens fabricated and compacted by a 3rd party laboratory and sent to participants for testing only (as per ASTM E691)
 - > Stage 1: Focus on non-VDOT laboratories (Spring 2020)

> Stage 2: Focus on VDOT laboratories (Spring 2021)

Phase I – Evaluated Mixtures

Mixture A

- Asphalt Binder: PG76-22
- RAP Content: 30%
- $N_{design} = 65$
- NMAS = 9.5mm
- Binder Content = 5.3%
- CML = 6.1%
- APA RD = 1.350 mm
- CT index < 100

Mixture B

- Asphalt Binder: PG64-22
- RAP Content: 0%
- $N_{design} = 50$
- NMAS = 12.5mm
- Binder Content = 5.8%
- CML = 3.8%
- APA RD = 4.160 mm
- CT index > 100

Phase I.1 – Experimental Program

Participants

- > 41 participants and 46 sets of tested specimens
 - 3 laboratories with multiple devices

Testing Instructions

- > Provided for consistency + all testing happened on dry specimens
- Conditioning in a chamber or leaked proof plastic bags placed in water
 - Challenges reported in keeping the specimens dry because of frequent water leaks due to tearing of the plastic bags!!!
- → Does testing dry or wet specimens make a difference?

Phase I.1 — Status of Submitted Data

- Machine-related issues: 3 datasets (7%)
- No raw data: 3 datasets (7%)
- Did not meet ASTM D8225: 10 datasets (21%)
- Testing Instructions
 - > Loading rate outside 50 ± 2 mm/min: 14 datasets (30%)
 - > Loading rate within 50 ± 2 mm/min: 16 datasets (35%)
 - **➤**Need for training?
 - → Quantify the impact of small deviation from the 48-52 mm/min?

Phase I.I: Database and Analysis Approaches

Database

- Category (i): 16 datasets
- > Category (ii): 30 datasets (16+14)

Analysis Approaches

- Original / Untrimmed
- > Trimmed

Phase I.I: Effect / Impact of Devices

Phase I.I: Effect / Impact of Devices (2)

Phase I.I: Database and Analysis Approaches

Database

- > Category (i): 16 datasets
- > Category (ii): 30 datasets (16+14)

Analysis Approaches

- Original / Untrimmed
- > Trimmed

Phase I.1 – Precision Estimates

	Study		Precision Estimates, COV, %		
			Single-Operator	Multi-Operator	
	16 data sets per mix 30 data sets per mix	Original Data (5)	18.3%	21.3%	
VTDC		Trimmed Data (3)	11.2%	15.9%	
VTRC		Original Data (5)	20.7%	21.9%	
		Trimmed Data (3)	12.8%	16.9%	
	NCAT		18.8%	20.2%	
Rutgers			15.2%	23.0%	

Phase I.1 – Numerical Example

Sample	Set 1 Lab A	Set 2 Lab B	
1	75	69	
2	99	74	
3	107	92	
4	87	51	
5	102	46	
Average CT index	94 🗸	67 X	
COV 13.8% /		27.7%	
Required Average CT index	70		
Single Operator COV	18.3%		

What about among laboratories?

d2s	33.6%
Multi Operator d2s	59.7%
COV	12.0%
Multi Operator COV	21.3%

Phase I.2 – Precision Estimates

Chara ID	A so so so a a la	Precision Estimates		
Stage ID	Approach	Single-Operator	Multi-Laboratory	
I (focus on NON-VDOT	Original data (Five replicates)	18.3%	21.3%	
Labs)	Trimmed data (Three replicates)	11.2%	15.9%	
II	Original data (Five replicates)	23.4%	23.8%	
(focus on VDOT Labs)	Trimmed data (Three replicates)	14.8%	15.8%	

Phase I – Impact of Shelf Life on CT index

What Do We Need More?

- Is Phase I *ENOUGH* for *Fair* Implementation
 - > What about the variability induced due to specimen preparation??

Phase II – Objectives

- Stage 1 Assess the impact of variability induced because of specimens preparation
 - > Evaluate the impact of generating a smaller number of replicates
- Stage 2 Assess the impact of specimen conditioning (dry vs. wet)
 - > Evaluate the feasibility of performing IDT-CT on wet specimens
- Stage 3 Assess the impact of loading rate and data collection frequency on the test results.

Phase II.1 – Experimental Program

- Evaluated Mixtures: Mixture A and B (same as Phase I), <u>Loose</u>
 - > Compact at least 5 IDT-CT good specimens + 2 Rice + Furnace + Gradation
- Participants
 - > 50 participants and 55 sets of tested specimens
 - 3 laboratories with multiple devices
- Data collection
 - > Testing instruction provided for consistency
 - > Testing was performed on **dry** specimens
 - > Data quality was checked for all submitted data

Phase II.1 – Status of Submitted Data

- Machine-related issues: 4 datasets (7%)
- No raw data: 3 datasets (5%)
- Did not meet ASTM D8225: 7 datasets (13%)
- Testing Instructions
 - ➤ Loading rate outside 50 ± 2 mm/min: 12 datasets (21%)
 - ➤ Loading rate within 50 ± 2 mm/min: 30 datasets (54%)
- → Phase I vs. Phase II: improvement in the quality of collected data

Phase I.1 vs. Phase II.1 - Status

Phase II.1 – Precision Estimates

	Study		Precision Estimates, COV, %				
			Single-Operator	Multi-Operator			
Loading rate IN accordance with ASTM D8225-19							
	50±2 mm/min	Phase I	18.3%	21.3% 29.7%			
		Phase II	20.4%	29.7%			
Loading rate NOT in accordance with ASTM D8225-19							
	50±3 mm/min	Phase I	20.7%	21.9%			
		Phase II	20.5%	29.4%			

What if? - Reduction of Specimen Replicates

- What if some of the non-reheats QA/QC IDT-CT specimens did not meet 7.0 ± 0.5%?
- What if some of the IDT-CT specimens were mishandled and damaged at any point?
- What if there were machine- and/or operator-related issues during testing of the compacted IDT-CT specimens?
 - → This could result in specimens sets consisting of fewer than five replicates for Quality Control or Assurance testing

Reduction of Specimen Replicates

Impact on Precision Estimates

Number of	Docarintian	Precision Estimates, COV, %		
Replicates	Description	Single-Operator	Multi- Laboratory	
5 Data used as collected		18.3 %	21.3 %	
3	After trimming	11.2 %	15.9 %	
4	Combinations of 4 of 5	18.4 %	20.7 %	
3	Combinations of 3 of 5	18.3 %	20.8 %	

Phase II.2 – Dry vs. Wet Testing

Dry Testing

Conditioning in a chamber or leaked proof plastic bags placed in water.

Wet Testing

➤ Placing specimens in a water bath for 2 hours, removing, and drying them until they reach saturate surface dry conditions.

Experimental Program

- > Two Mixtures A and B; Specimens prepared by 3rd party laboratory
- Five participants with ONLY Servo Hydraulic based machines

Phase II.2 – Dry vs. Wet Testing

Experimental Program

- Four Mixtures A, B, C, and D; Specimens prepared by 3rd party laboratory
- > Five loading rates: 46, 48, 50, 52, and 54 mm/min
- > Servo Hydraulic vs. Screw-Drive machines
- Multiple frequency to collect data: 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 Hz

Servo-Hydraulic

Servo-Hydraulic

Screw-Drive

Observations

- > Servo-hydraulic has better control of loading rate
- > Can widen the 50 ± 2 mm/min to 50 ± 3 mm/min
- ➤ No impact on data collection frequency
- Device type may be a significant factor or mixtures with relatively low CT index values
- → may raise a significant concern for long-term aged asphalt mixtures

Numerical Example – Mix Design

Comple ID	Short-Term Aged Specimens			Long-Term Aged Specimens	
Sample ID	OBC - 0.5%	OBC	OBC + 0.5%	OBC	
1	71.9	147.4	211.8	40.4	
2	<u>109.3</u>	127.6	<u>143.8</u>	<u>41.6</u>	
3	53.0	120.2	162.6	38.7	
4	70.9	70.9 <u>111.4</u> 159.0		35.2	
5	<u>41.2</u>	<u>178.7</u>	<u>227.1</u>	<u>24.9</u>	
	Analysis Using Original Untrimmed Data				
Average CT Index	69	137	181	36	
Required Average CT index		70		N/A	
Pass/Fail	Fail	Pass	Pass	N/A	
COV, %	37.3	19.5	20.1	18.7	
Single-Operator COV, %			18.3		
Pass/Fail Fail		Fail Fail		Fail	

Numerical Example - Production

Comple ID	Non-Reheated	Specimens	Reheated Specimens		
Sample ID	Contractor	VDOT	VDOT	VTRC	
1	176.8	<u>239.7</u>	188.3	121.6	
2	198.3	237.5	<u>124.7</u>	<u>110.6</u>	
3	<u>210.1</u>	189.7	152.5	141.5	
4	195.9	237.9	183.4	150.0	
5	<u>175.9</u>	<u>161.0</u>	<u>219.8</u>	<u>225.6</u>	
Anal	Analysis Using Original Untrimmed Data				
Average CT Index	191	213	174	150	
Required Average CT index	95		70		
Pass/Fail	Pass	Pass	Pass	Pass	
Single-Operator COV, %	7.7	16.9	20.9	30.1	
Required Single-Operator COV, %	18.3				
Pass/Fail	Pass	Pass	Fail	Fail	
Multi-Laboratory COV, %	3.8 5.3				
Required Multi-Laboratory COV, %	21.3				
Pass/Fail	Pass		Pass		

Keys Take Away

- Perform IDT-CT testing according to ASTM standard
 - > Data quality check is very important !!!
- "Variability" of performance testing is very important during both mix design and production stages.
- No difference between IDT-CT testing on "Dry" vs. "Wet".
- Allowable loading rate can be extended to 50 ± 3 mm/min
- Hands-on training and workshops are always needed!

Jhony.habbouche@vdot.virginia.gov

